Source code for nni.retiarii.nn.pytorch.component

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import copy
import warnings
from collections import OrderedDict
from typing import Callable, List, Dict, Union, Tuple, Optional

import torch
import torch.nn as nn

from nni.retiarii.utils import NoContextError, STATE_DICT_PY_MAPPING_PARTIAL

from .api import LayerChoice, ValueChoice, ValueChoiceX, ChoiceOf
from .cell import Cell
from .nasbench101 import NasBench101Cell, NasBench101Mutator
from .mutation_utils import Mutable, generate_new_label, get_fixed_value

__all__ = ['Repeat', 'Cell', 'NasBench101Cell', 'NasBench101Mutator', 'NasBench201Cell']

[docs]class Repeat(Mutable): """ Repeat a block by a variable number of times. Parameters ---------- blocks : function, list of function, module or list of module The block to be repeated. If not a list, it will be replicated (**deep-copied**) into a list. If a list, it should be of length ``max_depth``, the modules will be instantiated in order and a prefix will be taken. If a function, it will be called (the argument is the index) to instantiate a module. Otherwise the module will be deep-copied. depth : int or tuple of int If one number, the block will be repeated by a fixed number of times. If a tuple, it should be (min, max), meaning that the block will be repeated at least ``min`` times and at most ``max`` times. If a ValueChoice, it should choose from a series of positive integers. .. versionadded:: 2.8 Minimum depth can be 0. But this feature is NOT supported on graph engine. Examples -------- Block() will be deep copied and repeated 3 times. :: self.blocks = nn.Repeat(Block(), 3) Block() will be repeated 1, 2, or 3 times. :: self.blocks = nn.Repeat(Block(), (1, 3)) Can be used together with layer choice. With deep copy, the 3 layers will have the same label, thus share the choice. :: self.blocks = nn.Repeat(nn.LayerChoice([...]), (1, 3)) To make the three layer choices independent, we need a factory function that accepts index (0, 1, 2, ...) and returns the module of the ``index``-th layer. :: self.blocks = nn.Repeat(lambda index: nn.LayerChoice([...], label=f'layer{index}'), (1, 3)) Depth can be a ValueChoice to support arbitrary depth candidate list. :: self.blocks = nn.Repeat(Block(), nn.ValueChoice([1, 3, 5])) """ @classmethod def create_fixed_module(cls, blocks: Union[Callable[[int], nn.Module], List[Callable[[int], nn.Module]], nn.Module, List[nn.Module]], depth: Union[int, Tuple[int, int], ChoiceOf[int]], *, label: Optional[str] = None): if isinstance(depth, tuple): # we can't create a value choice here, # otherwise we will have two value choices, one created here, another in init. depth = get_fixed_value(label) if isinstance(depth, int): # if depth is a valuechoice, it should be already an int result = nn.Sequential(*cls._replicate_and_instantiate(blocks, depth)) if hasattr(result, STATE_DICT_PY_MAPPING_PARTIAL): # already has a mapping, will merge with it prev_mapping = getattr(result, STATE_DICT_PY_MAPPING_PARTIAL) setattr(result, STATE_DICT_PY_MAPPING_PARTIAL, {k: f'blocks.{v}' for k, v in prev_mapping.items()}) else: setattr(result, STATE_DICT_PY_MAPPING_PARTIAL, {'__self__': 'blocks'}) return result raise NoContextError(f'Not in fixed mode, or {depth} not an integer.') def __init__(self, blocks: Union[Callable[[int], nn.Module], List[Callable[[int], nn.Module]], nn.Module, List[nn.Module]], depth: Union[int, Tuple[int, int], ChoiceOf[int]], *, label: Optional[str] = None): super().__init__() self._label = None # by default, no label if isinstance(depth, ValueChoiceX): if label is not None: warnings.warn( 'In repeat, `depth` is already a ValueChoice, but `label` is still set. It will be ignored.', RuntimeWarning ) self.depth_choice: Union[int, ChoiceOf[int]] = depth all_values = list(self.depth_choice.all_options()) self.min_depth = min(all_values) self.max_depth = max(all_values) if isinstance(depth, ValueChoice): self._label = depth.label # if a leaf node elif isinstance(depth, tuple): self.min_depth = depth if isinstance(depth, int) else depth[0] self.max_depth = depth if isinstance(depth, int) else depth[1] self.depth_choice: Union[int, ChoiceOf[int]] = ValueChoice(list(range(self.min_depth, self.max_depth + 1)), label=label) self._label = self.depth_choice.label elif isinstance(depth, int): self.min_depth = self.max_depth = depth self.depth_choice: Union[int, ChoiceOf[int]] = depth else: raise TypeError(f'Unsupported "depth" type: {type(depth)}') assert self.max_depth >= self.min_depth >= 0 and self.max_depth >= 1, f'Depth of {self.min_depth} to {self.max_depth} is invalid.' self.blocks = nn.ModuleList(self._replicate_and_instantiate(blocks, self.max_depth)) @property def label(self) -> Optional[str]: return self._label def forward(self, x): for block in self.blocks: x = block(x) return x @staticmethod def _replicate_and_instantiate(blocks, repeat): if not isinstance(blocks, list): if isinstance(blocks, nn.Module): blocks = [blocks if i == 0 else copy.deepcopy(blocks) for i in range(repeat)] else: blocks = [blocks for _ in range(repeat)] assert repeat <= len(blocks), f'Not enough blocks to be used. {repeat} expected, only found {len(blocks)}.' if repeat < len(blocks): blocks = blocks[:repeat] if len(blocks) > 0 and not isinstance(blocks[0], nn.Module): blocks = [b(i) for i, b in enumerate(blocks)] return blocks def __getitem__(self, index): # shortcut for blocks[index] return self.blocks[index] def __len__(self): return self.max_depth
[docs]class NasBench201Cell(nn.Module): """ Cell structure that is proposed in NAS-Bench-201. Proposed by `NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search <>`__. This cell is a densely connected DAG with ``num_tensors`` nodes, where each node is tensor. For every i < j, there is an edge from i-th node to j-th node. Each edge in this DAG is associated with an operation transforming the hidden state from the source node to the target node. All possible operations are selected from a predefined operation set, defined in ``op_candidates``. Each of the ``op_candidates`` should be a callable that accepts input dimension and output dimension, and returns a ``Module``. Input of this cell should be of shape :math:`[N, C_{in}, *]`, while output should be :math:`[N, C_{out}, *]`. For example, The space size of this cell would be :math:`|op|^{N(N-1)/2}`, where :math:`|op|` is the number of operation candidates, and :math:`N` is defined by ``num_tensors``. Parameters ---------- op_candidates : list of callable Operation candidates. Each should be a function accepts input feature and output feature, returning nn.Module. in_features : int Input dimension of cell. out_features : int Output dimension of cell. num_tensors : int Number of tensors in the cell (input included). Default: 4 label : str Identifier of the cell. Cell sharing the same label will semantically share the same choice. """ @staticmethod def _make_dict(x): if isinstance(x, list): return OrderedDict([(str(i), t) for i, t in enumerate(x)]) return OrderedDict(x) def __init__(self, op_candidates: Union[Dict[str, Callable[[int, int], nn.Module]], List[Callable[[int, int], nn.Module]]], in_features: int, out_features: int, num_tensors: int = 4, label: Optional[str] = None): super().__init__() self._label = generate_new_label(label) self.layers = nn.ModuleList() self.in_features = in_features self.out_features = out_features self.num_tensors = num_tensors op_candidates = self._make_dict(op_candidates) for tid in range(1, num_tensors): node_ops = nn.ModuleList() for j in range(tid): inp = in_features if j == 0 else out_features op_choices = OrderedDict([(key, cls(inp, out_features)) for key, cls in op_candidates.items()]) node_ops.append(LayerChoice(op_choices, label=f'{self._label}__{j}_{tid}')) # put __ here to be compatible with base engine self.layers.append(node_ops)
[docs] def forward(self, inputs: torch.Tensor) -> torch.Tensor: """ The forward of input choice is simply selecting first on all choices. It shouldn't be called directly by users in most cases. """ tensors: List[torch.Tensor] = [inputs] for layer in self.layers: current_tensor: List[torch.Tensor] = [] for i, op in enumerate(layer): # type: ignore current_tensor.append(op(tensors[i])) # type: ignore tensors.append(torch.sum(torch.stack(current_tensor), 0)) return tensors[-1]