Source code for nni.compression.pytorch.utils.mask_conflict

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import os
import logging
import torch
import numpy as np
from .shape_dependency import ChannelDependency, GroupDependency, InputChannelDependency
from .utils import get_module_by_name
# logging.basicConfig(level = logging.DEBUG)
_logger = logging.getLogger('FixMaskConflict')


def fix_mask_conflict(masks, model, dummy_input, traced=None):
    """
    MaskConflict fix the mask conflict for the channel dependencies
    and group dependency.

    Parameters
    ----------
    masks : dict/str
        A dict object that stores the masks or the path of the mask file
    model : torch.nn.Module
        model to fix the mask conflict
    dummy_input : torch.Tensor/list of tensors/dict of tensors
        input example to trace the model
    traced : torch._C.torch.jit.TopLevelTracedModule
        the traced model of the target model, is this parameter is not None,
        we donnot use the model and dummpy_input to get the trace graph.
    """
    if isinstance(masks, str):
        # if the input is the path of the mask_file
        assert os.path.exists(masks)
        masks = torch.load(masks)
    assert len(masks) > 0, 'Mask tensor cannot be empty'
    # if the user uses the model and dummy_input to trace the model, we
    # should get the traced model handly, so that, we only trace the
    # model once, GroupMaskConflict and ChannelMaskConflict will reuse
    # this traced model.
    if traced is None:
        assert model is not None and dummy_input is not None
        training = model.training
        # We need to trace the model in eval mode
        model.eval()
        kw_args = {}
        if torch.__version__ >= '1.6.0':
            # only pytorch with version greater than 1.6.0 has the strict option
            kw_args['strict'] = False
        traced = torch.jit.trace(model, dummy_input, **kw_args)
        model.train(training)

    fix_group_mask = GroupMaskConflict(masks, model, dummy_input, traced)
    masks = fix_group_mask.fix_mask()
    fix_channel_mask = ChannelMaskConflict(masks, model, dummy_input, traced)
    masks = fix_channel_mask.fix_mask()
    return masks


class MaskFix:
    def __init__(self, masks, model=None, dummy_input=None, traced=None):
        # check if the parameters are valid
        parameter_valid = False
        if traced is not None:
            parameter_valid = True
        elif (model is not None) and (dummy_input is not None):
            parameter_valid = True
        if not parameter_valid:
            raise Exception('The input parameters is invalid!')
        self.model = model
        self.dummy_input = dummy_input
        self.traced = traced
        self.masks = masks

    def fix_mask(self):
        raise NotImplementedError

    def export(self, path):
        """
        Export the masks after fixing the conflict to file.
        """
        torch.save(self.masks, path)


[docs]class GroupMaskConflict(MaskFix): """ GroupMaskConflict fix the mask conflict between the layers that has group dependecy with each other. Parameters ---------- masks : dict a dict object that stores the masks model : torch.nn.Module model to fix the mask conflict dummy_input : torch.Tensor input example to trace the model traced : torch._C.torch.jit.TopLevelTracedModule the traced model of the target model, is this parameter is not None, we donnot use the model and dummpy_input to get the trace graph. """ def __init__(self, masks, model, dummy_input, traced=None): super(GroupMaskConflict, self).__init__( masks, model, dummy_input, traced)
[docs] def fix_mask(self): """ Fix the mask conflict before the mask inference for the layers that has group dependencies. This function should be called before the mask inference of the 'speedup' module. """ group_depen = GroupDependency( self.model, self.dummy_input, self.traced) depens = group_depen.dependency min_groups = group_depen.min_groups _logger.info(depens) for layername in depens: group_max = depens[layername] group_min = min_groups[layername] if layername not in self.masks: # this layer not pruned continue w_mask = self.masks[layername]['weight'] shape = w_mask.size() count = np.prod(shape[1:]) all_ones = (w_mask.flatten(1).sum(-1) == count).nonzero().squeeze(1).tolist() all_zeros = (w_mask.flatten(1).sum(-1) == 0).nonzero().squeeze(1).tolist() if len(all_ones) + len(all_zeros) < w_mask.size(0): # In fine-grained pruning, skip this layer _logger.info('Layers %s using fine-grained pruning', layername) continue assert shape[0] % group_max == 0 # Find the number of masked filter for each group (mini_masked). # Because we have to keep the pruned filter can still # be divided into the same number of groups, so we only can # prune mini_masked filters for each group. step = shape[0] / group_max group_masked = [] for i in range(group_max): _start = step * i _end = step * (i + 1) _tmp_list = list( filter(lambda x: _start <= x and x < _end, all_zeros)) group_masked.append(_tmp_list) mini_masked = min([len(x) for x in group_masked]) need_unmask = set() for gm in group_masked: for i in range(mini_masked, len(gm)): # To keep the output channel number still being divisible to # groups, we set the masks of following filters to be zero. pos = gm[i] need_unmask.add(pos) step = shape[0] / group_min for i in range(group_min): _start = step * i _end = step * (i+1) _tmp_list = list( filter(lambda x: _start <= x and x < _end, all_zeros)) if len(_tmp_list) == step: # if the whole group is removed, then we don't have to unmask for # the filters in this group for pos in _tmp_list: if pos in need_unmask: need_unmask.remove(pos) for pos in need_unmask: self.masks[layername]['weight'][pos] = torch.ones(shape[1:]) if hasattr(self.masks[layername], 'bias'): self.masks[layername]['bias'][pos] = 1 return self.masks
[docs]class ChannelMaskConflict(MaskFix): """ ChannelMaskConflict fix the mask conflict between the layers that has channel dependecy with each other. Parameters ---------- masks : dict a dict object that stores the masks model : torch.nn.Module model to fix the mask conflict dummy_input : torch.Tensor input example to trace the model graph : torch._C.torch.jit.TopLevelTracedModule the traced graph of the target model, is this parameter is not None, we donnot use the model and dummpy_input to get the trace graph. """ def __init__(self, masks, model, dummy_input, traced=None): super(ChannelMaskConflict, self).__init__( masks, model, dummy_input, traced) self.conv_prune_dim = detect_mask_prune_dim(masks, model) self.channel_prune_type = detect_channel_prune_type(masks, model) _logger.info('Dectected conv prune dim" %d', self.conv_prune_dim)
[docs] def fix_mask(self): """ Fix the mask conflict before the mask inference for the layers that has shape dependencies. This function should be called before the mask inference of the 'speedup' module. Only structured pruning masks are supported. """ if self.conv_prune_dim == 0: channel_depen = ChannelDependency( self.model, self.dummy_input, self.traced, self.channel_prune_type) else: channel_depen = InputChannelDependency( self.model, self.dummy_input, self.traced) depen_sets = channel_depen.dependency_sets sum_idx = (1, 2, 3) if self.conv_prune_dim == 0 else (0, 2, 3) (_tmp_name, _tmp_tensor) = list(self.masks.items())[0] device = _tmp_tensor['weight'].device for dset in depen_sets: if len(dset) <= 1: continue # channel_masks is a list, each element is None or a vector, for example: # [[0, 1, 1, 0, 0], [0, 0, 1, 1, 0], None], None means no channel # is pruned. channel_masks = [] fine_grained = False for name in dset: if name in self.masks: _, m = get_module_by_name(self.model, name) assert m is not None mask = self.masks[name]['weight'] if type(m).__name__ == 'Conv2d': channel_mask = (mask.abs().sum(sum_idx) != 0).int() channel_masks.append(channel_mask) if (channel_mask.sum() * (mask.numel() / mask.shape[self.conv_prune_dim])).item() != (mask > 0).sum().item(): fine_grained = True elif type(m).__name__ == 'Linear': if self.conv_prune_dim == 1: channel_masks.append( (mask.abs().sum(0) != 0).int()) else: channel_masks.append( (mask.abs().sum(1) != 0).int()) elif type(m).__name__ == 'BatchNorm2d': channel_masks.append(mask.int()) elif type(m).__name__ == 'ConvTranspose2d': # convtranspose have difference memory layout, so that we need create # a tmp_sum_idx for conv_transpose tmp_sum_idx = ( 0, 2, 3) if self.conv_prune_dim == 0 else (1, 2, 3) channel_mask = (mask.abs().sum(tmp_sum_idx) != 0).int() channel_masks.append(channel_mask) if (channel_mask.sum() * (mask.numel() / mask.shape[1 - self.conv_prune_dim])).item() != (mask > 0).sum().item(): fine_grained = True else: raise RuntimeError( f'unsupported module type: {type(m).__name__}') else: # no mask means not pruned, equivlent to full masks channel_masks.append(None) if fine_grained: _logger.info("Fine-grianed mask detected") if all(x is None for x in channel_masks): continue num_channels_list = [len(x) for x in channel_masks if x is not None] # number of channels in same set should be identical assert len(set(num_channels_list)) == 1 num_channels = num_channels_list[0] for i, dim_mask in enumerate(channel_masks): if dim_mask is None: channel_masks[i] = torch.ones( num_channels).int().to(device) # merge masks with 'or' merged_channel_mask = channel_masks[0].clone() for i in range(1, len(channel_masks)): merged_channel_mask = ( (merged_channel_mask + channel_masks[i]) != 0).int() merged_index = torch.nonzero(merged_channel_mask, as_tuple=True)[0] for name in dset: if name not in self.masks: assert all(merged_channel_mask) continue orig_mask = self.masks[name]['weight'] _, m = get_module_by_name(self.model, name) new_mask = torch.zeros_like(orig_mask) if type(m).__name__ == 'Conv2d': if self.conv_prune_dim == 0: new_mask[merged_index, :, :, :] = 1. else: new_mask[:, merged_index, :, :] = 1. elif type(m).__name__ == 'Linear': if self.conv_prune_dim == 0: new_mask[merged_index, :] = 1 elif self.conv_prune_dim == 1: new_mask[:, merged_index] = 1. elif type(m).__name__ == 'BatchNorm2d': new_mask = merged_channel_mask.type_as(orig_mask) else: raise RuntimeError( f'unsupported module type: {type(m).__name__}') self.masks[name]['weight'] = new_mask if 'bias' in self.masks[name] and self.masks[name]['bias'] is not None: if type(m).__name__ == 'Conv2d': assert self.conv_prune_dim == 0 if self.conv_prune_dim == 0: self.masks[name]['bias'] = merged_channel_mask.type_as( self.masks[name]['bias']) return self.masks
def detect_channel_prune_type(masks, model): """ User can prune a channel through two ways: 1) prune the corresponding filter of the conv layer(all the filter related pruner), 2) prune the BN layers that followed after a conv(Slim pruner). This function find the pruning type of the masks. Parameters ---------- masks: dict A dict object that stores the masks. model: nn.Module Model object which the mask can be applied on. Returns: ------- prune_type: str Could be Filter or Batchnorm """ prune_type = 'Filter' all_batch_norm = True for layer_name in masks: _, m = get_module_by_name(model, layer_name) if m is None or (not isinstance(m, torch.nn.BatchNorm2d)): all_batch_norm = False break if all_batch_norm: # if all masks are for batchnorm layers, then the prune_type is BatchNorm # Note, actually we currently do not support pruning both Conv and BatchNorm # at the same time. prune_type = 'Batchnorm' return prune_type def detect_mask_prune_dim(masks, model): """ Detect how the masks of convolutional layers are pruned. Parameters ---------- masks: dict A dict object that stores the masks. model: nn.Module Model object which the mask can be applied on. Returns: ------- How the masks of convolutional layers are pruned, this depends on pruning algorithms, it should return 1 for masks generated by AMCPruner, and returns 0 for masks generated by the rest NNI builtin pruners. 0: filter pruning, prune filters of weights which causes channels of output feature maps are pruned. 1: channel pruning, prune kernels corresponding to each input channels which causes channels of input feature maps are pruned. """ dim0_preserved, dim1_preserved = 0., 0. dim0_num, dim1_num = 0., 0. for module_name in masks: _, m = get_module_by_name(model, module_name) if m is None or type(m).__name__ != 'Conv2d': continue mask = masks[module_name]['weight'].clone() assert (mask >= 0).sum() == mask.numel(), \ "mask values should be greater than or equal to 0." mask = (mask > 0).int() mask = mask.view(mask.shape[0], mask.shape[1], -1) dim0_mask = (mask.sum((1, 2)) > 0).int() dim1_mask = (mask.sum((0, 2)) > 0).int() dim0_preserved += dim0_mask.sum().item() dim1_preserved += dim1_mask.sum().item() dim0_num += len(dim0_mask) dim1_num += len(dim1_mask) if dim0_num == 0 or dim1_num == 0: _logger.warning('no multi-dimension masks found.') return 0 dim0_sparsity, dim1_sparsity = 1. - dim0_preserved / \ dim0_num, 1. - dim1_preserved / dim1_num _logger.info('dim0 sparsity: %f', dim0_sparsity) _logger.info('dim1 sparsity: %f', dim1_sparsity) if dim0_sparsity == dim1_sparsity == 0.: _logger.warning('nothing masked.') if dim0_sparsity > 0 and dim1_sparsity > 0: _logger.warning('both dim0 and dim1 masks found.') return 0 if dim0_sparsity >= dim1_sparsity else 1