SpeedUp Model with Calibration Config

Introduction

Deep learning network has been computational intensive and memory intensive which increases the difficulty of deploying deep neural network model. Quantization is a fundamental technology which is widely used to reduce memory footprint and speedup inference process. Many frameworks begin to support quantization, but few of them support mixed precision quantization and get real speedup. Frameworks like HAQ: Hardware-Aware Automated Quantization with Mixed Precision, only support simulated mixed precision quantization which will not speedup the inference process. To get real speedup of mixed precision quantization and help people get the real feedback from hardware, we design a general framework with simple interface to allow NNI quantization algorithms to connect different DL model optimization backends (e.g., TensorRT, NNFusion), which gives users an end-to-end experience that after quantizing their model with quantization algorithms, the quantized model can be directly speeded up with the connected optimization backend. NNI connects TensorRT at this stage, and will support more backends in the future.

Design and Implementation

To support speeding up mixed precision quantization, we divide framework into two part, frontend and backend. Frontend could be popular training frameworks such as PyTorch, TensorFlow etc. Backend could be inference framework for different hardwares, such as TensorRT. At present, we support PyTorch as frontend and TensorRT as backend. To convert PyTorch model to TensorRT engine, we leverage onnx as intermediate graph representation. In this way, we convert PyTorch model to onnx model, then TensorRT parse onnx model to generate inference engine.

Quantization aware training combines NNI quantization algorithm ‘QAT’ and NNI quantization speedup tool. Users should set config to train quantized model using QAT algorithm(please refer to NNI Quantization Algorithms ). After quantization aware training, users can get new config with calibration parameters and model with quantized weight. By passing new config and model to quantization speedup tool, users can get real mixed precision speedup engine to do inference.

After getting mixed precision engine, users can do inference with input data.

Note

  • Recommend using “cpu”(host) as data device(for both inference data and calibration data) since data should be on host initially and it will be transposed to device before inference. If data type is not “cpu”(host), this tool will transpose it to “cpu” which may increases unnecessary overhead.

  • User can also do post-training quantization leveraging TensorRT directly(need to provide calibration dataset).

  • Not all op types are supported right now. At present, NNI supports Conv, Linear, Relu and MaxPool. More op types will be supported in the following release.

Prerequisite

CUDA version >= 11.0

TensorRT version >= 7.2

Note

Usage

import torch
import torch.nn.functional as F
from torch.optim import SGD
from nni_assets.compression.mnist_model import TorchModel, device, trainer, evaluator, test_trt

config_list = [{
    'quant_types': ['input', 'weight'],
    'quant_bits': {'input': 8, 'weight': 8},
    'op_types': ['Conv2d']
}, {
    'quant_types': ['output'],
    'quant_bits': {'output': 8},
    'op_types': ['ReLU']
}, {
    'quant_types': ['input', 'weight'],
    'quant_bits': {'input': 8, 'weight': 8},
    'op_names': ['fc1', 'fc2']
}]

model = TorchModel().to(device)
optimizer = SGD(model.parameters(), lr=0.01, momentum=0.5)
criterion = F.nll_loss
dummy_input = torch.rand(32, 1, 28, 28).to(device)

from nni.compression.pytorch.quantization import QAT_Quantizer
quantizer = QAT_Quantizer(model, config_list, optimizer, dummy_input)
quantizer.compress()

Out:

TorchModel(
  (conv1): QuantizerModuleWrapper(
    (module): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
  )
  (conv2): QuantizerModuleWrapper(
    (module): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  )
  (fc1): QuantizerModuleWrapper(
    (module): Linear(in_features=256, out_features=120, bias=True)
  )
  (fc2): QuantizerModuleWrapper(
    (module): Linear(in_features=120, out_features=84, bias=True)
  )
  (fc3): Linear(in_features=84, out_features=10, bias=True)
  (relu1): QuantizerModuleWrapper(
    (module): ReLU()
  )
  (relu2): QuantizerModuleWrapper(
    (module): ReLU()
  )
  (relu3): QuantizerModuleWrapper(
    (module): ReLU()
  )
  (relu4): QuantizerModuleWrapper(
    (module): ReLU()
  )
  (pool1): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
  (pool2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
)

finetuning the model by using QAT

for epoch in range(3):
    trainer(model, optimizer, criterion)
    evaluator(model)

Out:

Average test loss: 0.3398, Accuracy: 8982/10000 (90%)
Average test loss: 0.1530, Accuracy: 9532/10000 (95%)
Average test loss: 0.1065, Accuracy: 9673/10000 (97%)

export model and get calibration_config

import os
os.makedirs('log', exist_ok=True)
model_path = "./log/mnist_model.pth"
calibration_path = "./log/mnist_calibration.pth"
calibration_config = quantizer.export_model(model_path, calibration_path)

print("calibration_config: ", calibration_config)

Out:

calibration_config:  {'conv1': {'weight_bits': 8, 'weight_scale': tensor([0.0031], device='cuda:0'), 'weight_zero_point': tensor([120.], device='cuda:0'), 'input_bits': 8, 'tracked_min_input': -0.4242129623889923, 'tracked_max_input': 2.821486711502075}, 'conv2': {'weight_bits': 8, 'weight_scale': tensor([0.0017], device='cuda:0'), 'weight_zero_point': tensor([112.], device='cuda:0'), 'input_bits': 8, 'tracked_min_input': 0.0, 'tracked_max_input': 10.270780563354492}, 'fc1': {'weight_bits': 8, 'weight_scale': tensor([0.0010], device='cuda:0'), 'weight_zero_point': tensor([131.], device='cuda:0'), 'input_bits': 8, 'tracked_min_input': 0.0, 'tracked_max_input': 14.321571350097656}, 'fc2': {'weight_bits': 8, 'weight_scale': tensor([0.0014], device='cuda:0'), 'weight_zero_point': tensor([112.], device='cuda:0'), 'input_bits': 8, 'tracked_min_input': 0.0, 'tracked_max_input': 14.133180618286133}, 'relu1': {'output_bits': 8, 'tracked_min_output': 0.0, 'tracked_max_output': 10.405377388000488}, 'relu2': {'output_bits': 8, 'tracked_min_output': 0.0, 'tracked_max_output': 14.843622207641602}, 'relu3': {'output_bits': 8, 'tracked_min_output': 0.0, 'tracked_max_output': 14.523283004760742}, 'relu4': {'output_bits': 8, 'tracked_min_output': 0.0, 'tracked_max_output': 12.40306568145752}}

build tensorRT engine to make a real speedup

from nni.compression.pytorch.quantization_speedup import ModelSpeedupTensorRT
input_shape = (32, 1, 28, 28)
engine = ModelSpeedupTensorRT(model, input_shape, config=calibration_config, batchsize=32)
engine.compress()
test_trt(engine)

Out:

Loss: 0.10724755859375  Accuracy: 96.64%
Inference elapsed_time (whole dataset): 0.03695106506347656s

Note that NNI also supports post-training quantization directly, please refer to complete examples for detail.

For complete examples please refer to the code.

For more parameters about the class ‘TensorRTModelSpeedUp’, you can refer to Model Compression API Reference.

Mnist test

on one GTX2080 GPU, input tensor: torch.randn(128, 1, 28, 28)

quantization strategy

Latency

accuracy

all in 32bit

0.001199961

96%

mixed precision(average bit 20.4)

0.000753688

96%

all in 8bit

0.000229869

93.7%

Cifar10 resnet18 test (train one epoch)

on one GTX2080 GPU, input tensor: torch.randn(128, 3, 32, 32)

quantization strategy

Latency

accuracy

all in 32bit

0.003286268

54.21%

mixed precision(average bit 11.55)

0.001358022

54.78%

all in 8bit

0.000859139

52.81%

Total running time of the script: ( 1 minutes 4.471 seconds)

Gallery generated by Sphinx-Gallery