nni.compression.pruning.taylor_pruner 源代码

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

from __future__ import annotations

from collections import defaultdict
import functools
import logging
from typing import Callable, Dict, List, Literal, Tuple, overload

import torch

from .tools import _METRICS, _MASKS, norm_metrics, generate_sparsity, is_active_target
from ..base.compressor import Compressor, Pruner
from ..base.target_space import TargetType
from ..base.wrapper import ModuleWrapper
from ..utils.docstring import _EVALUATOR_DOCSTRING
from ..utils.evaluator import Evaluator, TensorHook

_logger = logging.getLogger(__name__)


[文档] class TaylorPruner(Pruner): __doc__ = r""" Taylor pruner is a pruner which prunes on the first weight dimension, based on estimated importance calculated from the first order taylor expansion on weights to achieve a preset level of network sparsity. The estimated importance is defined as the paper `Importance Estimation for Neural Network Pruning <http://jankautz.com/publications/Importance4NNPruning_CVPR19.pdf>`__. :math:`\widehat{\mathcal{I}}_{\mathcal{S}}^{(1)}(\mathbf{W}) \triangleq \sum_{s \in \mathcal{S}} \mathcal{I}_{s}^{(1)}(\mathbf{W})=\sum_{s \in \mathcal{S}}\left(g_{s} w_{s}\right)^{2}` """ + r""" Parameters ---------- model Model to be pruned. config_list A list of dict, each dict configure which module need to be pruned, and how to prune. Please refer :doc:`Compression Config Specification </compression/config_list>` for more information. evaluator {evaluator_docstring} training_steps The step number used to collect gradients, the masks will be generated after training_steps training. Examples -------- Please refer to :githublink:`examples/compression/pruning/taylor_pruning.py <examples/compression/pruning/taylor_pruning.py>`. """.format(evaluator_docstring=_EVALUATOR_DOCSTRING) @overload def __init__(self, model: torch.nn.Module, config_list: List[Dict], evaluator: Evaluator, training_steps: int): ... @overload def __init__(self, model: torch.nn.Module, config_list: List[Dict], evaluator: Evaluator, training_steps: int, existed_wrappers: Dict[str, ModuleWrapper]): ... def __init__(self, model: torch.nn.Module, config_list: List[Dict], evaluator: Evaluator, training_steps: int, existed_wrappers: Dict[str, ModuleWrapper] | None = None): super().__init__(model=model, config_list=config_list, evaluator=evaluator, existed_wrappers=existed_wrappers) self.evaluator: Evaluator self.training_steps = training_steps # trigger masks generation when self._current_step == self.training_steps self._current_step = 0 # save all target hooks with format {module_name: {target_name: hook}} self.hooks: Dict[str, Dict[str, TensorHook]] = defaultdict(dict) # `interval_steps` and `total_times` are used by `register_trigger`. # `interval_steps` is the optimize step interval for generating masks. # `total_times` is the total generation times of masks. self.interval_steps = training_steps self.total_times: int | Literal['unlimited'] = 1 @classmethod def from_compressor(cls, compressor: Compressor, new_config_list: List[Dict], training_steps: int, evaluator: Evaluator | None = None): return super().from_compressor(compressor, new_config_list, training_steps=training_steps, evaluator=evaluator) def _collect_data(self) -> Dict[str, Dict[str, torch.Tensor]]: data = defaultdict(dict) for module_name, hooks in self.hooks.items(): for target_name, hook in hooks.items(): if len(hook.buffer) > 0: data[module_name][target_name] = hook.buffer[0] / self.training_steps return data def _calculate_metrics(self, data: Dict[str, Dict[str, torch.Tensor]]) -> _METRICS: return norm_metrics(p=1, data=data, target_spaces=self._target_spaces) def _generate_sparsity(self, metrics: _METRICS) -> _MASKS: return generate_sparsity(metrics, self._target_spaces) def _register_hooks(self, evaluator: Evaluator): def collector(buffer: List, target: torch.Tensor) -> Callable[[torch.Tensor], None]: # a factory function, return a tensor hook function for target assert len(buffer) == 0, 'Buffer pass to taylor pruner collector is not empty.' def collect_taylor(grad: torch.Tensor): if len(buffer) == 0: buffer.append(torch.zeros_like(grad)) if self._current_step < self.training_steps: buffer[0] += (target.detach() * grad.detach()).pow(2) return collect_taylor hook_list = [] for module_name, ts in self._target_spaces.items(): for target_name, target_space in ts.items(): if is_active_target(target_space): # TODO: add input/output if target_space.type is TargetType.PARAMETER: assert target_space.target is not None hook = TensorHook(target_space.target, target_name, functools.partial(collector, target=target_space.target)) hook_list.append(hook) self.hooks[module_name][target_name] = hook else: raise NotImplementedError() evaluator.register_hooks(hook_list) def _register_trigger(self, evaluator: Evaluator): assert self.interval_steps >= self.training_steps or self.interval_steps < 0 self._remaining_times = self.total_times def optimizer_task(): self._current_step += 1 if self._current_step == self.training_steps: masks = self.generate_masks() self.update_masks(masks) if isinstance(self._remaining_times, int): self._remaining_times -= 1 debug_msg = f'{self.__class__.__name__} generate masks, remaining times {self._remaining_times}' _logger.debug(debug_msg) if self._current_step == self.interval_steps and \ (self._remaining_times == 'unlimited' or self._remaining_times > 0): # type: ignore self._current_step = 0 for _, hooks in self.hooks.items(): for _, hook in hooks.items(): hook.buffer.clear() evaluator.patch_optimizer_step(before_step_tasks=[], after_step_tasks=[optimizer_task]) def _single_compress(self, max_steps: int | None, max_epochs: int | None): assert max_steps is None and max_epochs is None self._fusion_compress(self.training_steps, None) def _fuse_preprocess(self, evaluator: Evaluator) -> None: self._register_hooks(evaluator) self._register_trigger(evaluator) def _fuse_postprocess(self, evaluator: Evaluator) -> None: pass @overload def compress(self) -> Tuple[torch.nn.Module, _MASKS]: ... @overload def compress(self, max_steps: int | None, max_epochs: int | None) -> Tuple[torch.nn.Module, _MASKS]: ... def compress(self, max_steps: int | None = None, max_epochs: int | None = None): return super().compress(max_steps, max_epochs)