Knowledge Distillation on NNI¶
KnowledgeDistill¶
Knowledge Distillation (KD) is proposed in Distilling the Knowledge in a Neural Network, the compressed model is trained to mimic a pre-trained, larger model. This training setting is also referred to as “teacher-student”, where the large model is the teacher and the small model is the student. KD is often used to fine-tune the pruned model.

Usage¶
PyTorch code
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
y_s = model_s(data)
y_t = model_t(data)
loss_cri = F.cross_entropy(y_s, target)
# kd loss
p_s = F.log_softmax(y_s/kd_T, dim=1)
p_t = F.softmax(y_t/kd_T, dim=1)
loss_kd = F.kl_div(p_s, p_t, size_average=False) * (self.T**2) / y_s.shape[0]
# total loss
loss = loss_cir + loss_kd
loss.backward()
The complete code for fine-tuning the pruned model can be found here
python finetune_kd_torch.py --model [model name] --teacher-model-dir [pretrained checkpoint path] --student-model-dir [pruned checkpoint path] --mask-path [mask file path]
Note that: for fine-tuning a pruned model, run basic_pruners_torch.py first to get the mask file, then pass the mask path as argument to the script.